MSRA atT TRECVID 2008: High-Level Feature Extraction and Automatic Search
نویسندگان
چکیده
This paper describes the MSRA experiments for TRECVID 2008. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we representatively investigated the benefit of global and local low-level features by a variety of learning-based methods, including supervised and semi-supervised learning algorithms. For automatic search, we focused on text and visual baseline, query-independent learning, and various reranking methods.
منابع مشابه
MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search
This paper describes the MSRA-USTC-SJTU experiments for TRECVID 2007. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we investigated the benefit of unlabeled data by semi-supervised learning, and the multi-layer (ML) multi-instance (MI) relation embedded in video by MLMI kernel, as well as the correlations between con...
متن کاملTRECVID 2008 - Goals, Tasks, Data, Evaluation Mechanisms and Metrics
The TREC Video Retrieval Evaluation (TRECVID) 2008 is a Text REtrieval Conference (TREC)-style video analysis and retrieval evaluation, the goal of which remains to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last 7 years this effort has yielded a better understanding of how systems can effectively accomplish such processing and h...
متن کاملShanghai Jiao Tong University participation in high-level feature extraction, automatic search and surveillance event detectionat TRECVID 2008
In this paper, we describe our participation for high-level feature extraction, automatic search and surveillance event detection at TRECVID 2008 evaluation. In high-level feature extraction, we use selective attention model to extract visual salient feature which highlights the most visual attractive information of an image. Besides this, we extract 7 low-level features for various modalities ...
متن کاملBeyond Semantic Search: What You Observe May Not Be What You Think
This paper presents our approaches and results of the four TRECVID 2008 tasks we participated in: high-level feature extraction, automatic video search, video copy detection, and rushes summarization. In high-level feature extraction, we jointly submitted our results with Columbia University. The four runs submitted through CityU aim to explore context-based concept fusion by modeling inter-con...
متن کاملSemantic Video Annotation using Background Knowledge and Similarity-based Video Retrieval
We describe our experiments for the High-level Feature Extraction (FE) and Search (SE) tasks. We submitted two automatic runs to the FE task, the first one (MMIS alexei) was based on a probabilistic approach while the second (MMIS ainhoa) was an enhanced version that used background knowledge in the form of statistical co-occurrence of annotation keywords. While previous applications of this ap...
متن کامل